Chapter Nine

Simple Interest

Introduction:

- Money borrowed from or deposited at institutions such as a bank, is referred to as the principal.
- When we are returning this borrowed amount, we have to pay a price and this price paid a known as the interest or simple interest.
- Apart from that when we deposit an amount at a bank; the bank adds interest to it from time to time.
- It is also a common practice that when we take a loan from an individual or a group, we return it with an interest.

$$S.I = \frac{P \times R \times T}{100}$$
, where $S.I = simple interest$.

P = the Principal.

T = the time in years.

 $R = the \ rate.$

Q1. Find the simple interest on ¢700 for 5 years, at a rate of 3% per annum.

$$P = $\phi 700$$
, $R = 3\%$, $T = 5$ years.

$$S.I = \frac{P \times R \times T}{100} = \frac{700 \times 3 \times 5}{100} = 105. \ \textit{The simple interest} = \text{ψ} 105.$$

Q2. Find the simple interest on \$\psi 500\$ at 10% per annum for 2 years.

$$P = $\psi 500$, $R = 10\%$, $T = 2$ years.$$

$$S.I = \frac{P \times R \times T}{100} = \frac{500 \times 10 \times 2}{100} = \text{ϕ} 100.$$

- Q3. A man borrowed ¢2000 from a bank for 10 years, at an interest rate of 5% per annum. Calculate
 - i. the interest he paid on this loan.
 - ii. the amount he returned to the bank.

Soln.

i.
$$P = $2000, T = 10 years, R = 5\%.$$

 $S.I = \frac{P \times R \times T}{100} = \frac{2000 \times 5 \times 10}{100} = 1000

ii. The amount he paid to the bank = the principal + the interest = $\phi 2000 + \phi 1000 = \phi 3,000$

Q4. Mr. John wishes to take a loan of ϕ 400 from a bank for 8 years, at an interest rate of 2% p.a. Determine the amount of money which he will be required to pay back to the bank.

N/B: P.a = per annum.

Soln.

$$P = ¢400$$
. $T = 8yrs R = 2\%$.

S.I =
$$\frac{P \times R \times T}{100} = \frac{400 \times 2 \times 8}{100} = 64$$
, => the interest = \$\circ\$64.

Amount needed to be paid to the bank = 400 + 64 = \$,\$464.

Q5. Determine the interest on 600 for 4 years at a rate of $2\frac{1}{2}$ % per annum.

Soln.

$$P = $600$$
, $T = 4$ years, $R = 2\frac{1}{2}\% = \frac{5}{2}\%$.

$$S.I = \frac{P \times R \times T}{100} = \frac{600 \times \frac{5}{2} \times 4}{100} = \frac{600 \times 5 \times 4}{2 \times 100} = \frac{600 \times 5 \times 4}{200} = 600.$$

Q6. Find the simple interest on a loan of ¢9000, taken from a financial institution by Mr. Kwame at an interest rate of $3\frac{1}{3}\%$ per annum, if he was able to repay the loan in five years time.

$$P = $\emptyset 9000$$
, $T = 5$ years, $R = 3\frac{1}{3}\% = \frac{10}{3}\%$.

$$S.I = \frac{P \times R \times T}{100} = \frac{9000 \times \frac{10}{3} \times 5}{100} = \frac{9000 \times 10 \times 5}{3 \times 100} = \frac{9000 \times 10 \times 5}{300} = \text{ϕ} 1500.$$

Q7. Find the simple interest on ¢400 for 6 months at a rate of 10% per annum. N/B: The time given in months must be changed into years by dividing by 12.

Soln.

$$P = $\circ{$} 400$$
, $R = 10\%$, $T = 6$ months $= \frac{6}{12} = \frac{1}{2} year$.

$$S.I = \frac{P \times R \times T}{100} = \frac{400 \times 10 \times \frac{1}{2}}{100} = \frac{400 \times 10 \times 1}{2 \times 100} = \frac{400 \times 10}{200} = $£20.$$

Q8. A man deposited ϕ 4,500 at a bank for 3 months at a rate of 60% per annum. Calculate the interest earned at the end of the 3 months period.

Soln

$$P = $\psi 4500$, $R = 60\%$, $T = 3 \text{ months} = \frac{3}{12} = \frac{1}{4} year$.$$

$$S.I = \frac{P \times R \times T}{100} = \frac{4500 \times 60 \times \frac{1}{4}}{100} = \frac{4500 \times 60 \times 1}{4 \times 100} = \frac{4500 \times 60}{400} = \text{$$} 675.$$

Q9. \$\psi 800\$ was deposited at a bank for 4 months, at a rate of 3\(^1/4\)% per annum.

Determine the interest earned

Soln.

Q10. Find the principal which generated an interest of ¢18, for 3 years at a rate 6% per annum.

Soln.

P = ?, T = 3yrs, R = 6%, S.I = \$\psi 18\$.
Since S.I =
$$\frac{P \times R \times T}{100}$$
 => $18 = \frac{P \times 6 \times 3}{100}$, => $18 = \frac{18P}{100}$ => $18 \times 100 = 18P$, => $1800 = 18P$, => $P = \frac{1800}{18} = p100.$

Q11. A certain amount was deposited at a bank for 10 years, at a rate of 4% per annum. If the interest earned was ¢500, determine this amount.

Soln.

P = ?, S.I = ¢500, R = 4% and T = 10 yrs.
S.I =
$$\frac{P \times R \times T}{100}$$
 \Rightarrow 500 = $\frac{P \times 4 \times 10}{100}$, \Rightarrow 500 = $\frac{40P}{100}$ => 500 × 100 = 40 P , \Rightarrow 50000 = 40 P \Rightarrow P = $\frac{50000}{40}$, \Rightarrow P = 1250. The amount = ¢1,250.

Q12. Kofi earned an interest of ¢2000 at a bank, for depositing an amount of money at this bank for 3 months, at a rate of 20% per annum. Calculate his deposit.

Soln.
S.I =
$$\&2000$$
, P =?, T = 3 months = $\frac{3}{12} = \frac{1}{4}yr$, R = 20%.

$$S.I = \frac{P \times R \times T}{100} \Longrightarrow 2000 = \frac{P \times 20 \times \frac{1}{4}}{100}, \Longrightarrow 2000 = \frac{P \times 20}{4 \times 100} \Longrightarrow 2000$$
$$= \frac{20P}{400}, \Longrightarrow 2000 \times 400 = 20P, \Longrightarrow 800000 = 20P \Longrightarrow P$$
$$= \frac{800000}{20} = 40000.$$

The amount deposited = $\phi 40,000$.

Q13. An amount of ϕ 550 deposited at a bank earned an interest of ϕ 55. If the rate was 10% p.a, determine the time.

Soln.

$$S.I = $\phi 55$$
, $P = $\phi 550$, $R = 10\%$, $T = ?$

Since S.I =
$$\frac{P \times R \times T}{100}$$
 => 55 = $\frac{550 \times 10 \times T}{100}$, \Longrightarrow 55 = 55 $T \Longrightarrow T = \frac{55}{55} = 1yr$.

Q14. An amount of &ppex250 was borrowed from a bank at an interest rate of 20% per annum, for a certain length of time. Given that the interest paid at the end of this time period was &ppex50, find the time.

Soln.

$$P = ¢250, R = 20\%, S.I = ¢50, T = ?$$

$$S.I = \frac{P \times R \times T}{100} = 50 = \frac{250 \times 20 \times T}{100}, \implies 50 = 50T = 7 = 1yr.$$

Q15. An amount of $\&ppercent{$\phi$}2000$ was deposited at a bank at a rate of 40% per .annum, for a certain length of time. If at the end of this time period it has increased to $\&ppercent{$\phi$}4800$, calculate this time.

Soln.

Initial amount deposited = the principal = $$\phi 2000$$. The value of this amount at the end this time period = $$\phi 4800 = $interest = 4800 - 2000 = $\phi 2800$$. Rate = 40%. $S.I = \frac{P \times R \times T}{100} \Rightarrow 2800 = \frac{2000 \times 40 \times T}{100}$, $\Rightarrow 2800 = 800T \Rightarrow T = \frac{2800}{800} = 3\frac{1}{2}yrs$.

Q16. John borrowed an amount of $\phi 600$ at an interest rate of $12\frac{1}{2}$ % per annum. If at the end of a certain length of time he had to pay $\phi 630$ to the one from whom he borrowed this amount, determined the time.

Soln.

Amount borrowed = the principal = $\phi 600$.

Since the amount paid back = $$\phi 630$$, => interest paid

$$= $630 - $600 = $30.$$

$$R = 12\frac{1}{2}\% = \frac{25}{2}\%. Since \ S.I = \frac{P \times R \times T}{100} = > 30 = \frac{600 \times \frac{25}{2} \times T}{100}, \Rightarrow 30$$
$$= \frac{600 \times 25 \times T}{2 \times 100}, \Rightarrow 30 = 75T \Rightarrow T = \frac{30}{75} = \frac{2}{5}year.$$